Manufactured Homes
New Efficiency for the Lowest Cost Housing Option

BPA E3T Emerging Technologies Showcase
September 10, 2015

Welcome. Today’s webinar is being recorded and will be posted at:
- www.E3Tnw.org
- www.ConduitNW.org
GoToWebinar Logistics

- Minimize or maximize control panel
- Phone lines are muted
- Please use question pane to ask questions during Q & A or if you have any technical issues

NOTE: Today’s presentation is being recorded and will be available at http://e3tnw.org/Webinars
Manufactured Homes
New Efficiency for the Lowest Cost Housing Option

Christopher Dymond
Sr. Product Manager, Northwest Energy Efficiency Alliance

Brady Peeks
Technical Director, Northwest Energy Works, Inc.

Michael Lubliner
Sr. Building Science Specialist, WSU Energy Program

Emerging Technology Showcase
September 10, 2015
Utility Funded Non-Profit
- $169 M for 2015-2019
- Bonneville Power Administration, on behalf of more than 140 utilities
- Energy Trust of Oregon
- Seven public and five investor-owned utilities
- 80+ staff
- Advisory committees, regional workgroups
Outline

Background
HUD Code
BPA Demo Projects
Next Steps

One of the eight High Performance Manufactured Home Demonstration Homes shortly after set up
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEEM</td>
<td>Northwest Energy Efficient Manufactured Home</td>
</tr>
<tr>
<td>HPMH</td>
<td>High Performance Manufactured Home</td>
</tr>
<tr>
<td>MAP</td>
<td>Manufactured Home Acquisition Program</td>
</tr>
<tr>
<td>HUD</td>
<td>Housing and Urban Development Department</td>
</tr>
<tr>
<td>IECC</td>
<td>International Energy Conservation Code</td>
</tr>
<tr>
<td>RTF</td>
<td>Regional Technical Forum (Part of NW Power and Conservation Council)</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>NEW</td>
<td>Northwest Energy Works</td>
</tr>
<tr>
<td>MHI</td>
<td>Manufactured Home Institute</td>
</tr>
<tr>
<td>NEG REG</td>
<td>Negotiated Regulation</td>
</tr>
</tbody>
</table>
Manufactured Homes

- High Quality
- Low Cost
- Rural Availability
- Efficient
Cost of Home, Including Energy and Financing

Specs at Different Mortgage Rates

Lowest cost of Housing is High Performance Manufactured Home
History of EE Manufactured Homes

- Research Phase, utilities began industry engagement

- 50,000 homes built under MAP
- Utility support led to HUD standard change in 1994

NEEM Housing Program 1996 to present
- Industry funded
- Utility incentives promote program uptake
- Homes branded Super Good Cents and Natural Choice (gas heated), later transitioned to Energy Star and Eco-rated
Characterization

- 3,000 sold per year
- 9 Northwest Factories
- ~50 Retailers
- Sales trending upward

Current Situation

- Future HUD code will be in effect in 2-4 years (*best estimate*)
- Factories operating at 30-40% of capacity
- Appraisers don’t recognize incremental value
- The industries traditional market is not willing to pay more
E3T
Energy
Efficiency
Emerging Technologies

Kit Homebuilders
- Fleetwood of ID
- Golden West
- Marlette
- Skyline
- Palm Harbor
- Golden West

Champion

Fleetwood

Northwest Factories
HUD Code vs. Site Built Code

IECC Zone 5 - Marine

Heat Loss Rate

0%
50%
100%
150%
200%
250%
300%
350%

1976 HUD
1994 HUD
IECC 2009
IECC 2012

IECC Zone 6

Current NEEM Spec

* Bonneville Power Administration Analysis
Housing and Urban Development Department (HUD)

- Federal Manufactured Housing Construction Safety Standards (MHCSS aka the “HUD Code”) – Established in 1976
- Preempts state building energy codes
- Last updated in 1994

US Congress

- Energy Independence and Security Act of 2007 required DOE to establish standards for energy
- Deadline for completion = December 2011
 Overdue
DOE ASRAC in Fall 2014

- Negotiated Rule Making (aka “NEG REG”)
- 20 Stakeholders
- Life Cycle Cost (LCC) method
- Developed Consensus Term Sheet

LCC methodology
Rough Equivalence to IECC

- Walls = R19
- Roof = R38
- Floor = R30
- Windows = 0.32 U-Value
- Electric Resistance FAF allowed
- Air Tightness = 5.0 ACH50

Slightly higher efficiency requirements for multi-section
NEEM Program
(Northwest Energy Efficient Manufactured Housing)

Industry voluntary efficiency program
3rd Party admin by Northwest Energy Works

Branding
- Super Good Cents
- Natural Choice
- Energy Star
- Eco-rated

Provides value to manufacturers, retailers, and consumers
Beyond just the specs

- Reduced voids
- Setup at the site
- Homeowner issue resolution
- Industry uniformity
- Spill-over to non-NEEM
8 homes built to a very high efficiency spec
 – BPA paid for capital costs
 – NEEA paying for the data acquisition and analysis
 – 4 built in 2013, 4 built by early 2015

Project Goal
 – Have each manufacturer build one
 – Determine manufacturing costs, challenges
 – Monitor savings to calibrate models
Demonstration Homes

<table>
<thead>
<tr>
<th>Home</th>
<th>Manufacturer</th>
<th>Location</th>
<th>Floor Area</th>
<th>UA (incl. 0.28 ACHn)</th>
<th>ACH50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fleetwood Homes of Oregon</td>
<td>Toledo, WA</td>
<td>1,279</td>
<td>187</td>
<td>3.02</td>
</tr>
<tr>
<td>2</td>
<td>CMH - Golden West Homes</td>
<td>Pullman, WA</td>
<td>1,296</td>
<td>193</td>
<td>3.57</td>
</tr>
<tr>
<td>3</td>
<td>Skyline</td>
<td>Otis, OR</td>
<td>1,404</td>
<td>207</td>
<td>2.86</td>
</tr>
<tr>
<td>4</td>
<td>Palm Harbor Homes</td>
<td>Bothell, WA</td>
<td>1,137</td>
<td>169</td>
<td>2.75</td>
</tr>
<tr>
<td>5</td>
<td>Fleetwood Homes of Oregon</td>
<td>Chehalis, WA</td>
<td>1,492</td>
<td>223</td>
<td>2.40</td>
</tr>
<tr>
<td>6</td>
<td>Palm Harbor Homes</td>
<td>Sixes, OR</td>
<td>587</td>
<td>112</td>
<td>1.17</td>
</tr>
<tr>
<td>7</td>
<td>Marlette Homes</td>
<td>Siletz, OR</td>
<td>2,100</td>
<td>286</td>
<td>not yet tested</td>
</tr>
<tr>
<td>8</td>
<td>Kit Homebuilders West</td>
<td>Boring, OR</td>
<td>1,138</td>
<td>187</td>
<td>3.99</td>
</tr>
</tbody>
</table>
Demonstration Homes

Bothell
Chehalis
Toledo
Otis
Siletz
Sixes
Pullman
Demonstration Homes
Manufactured Homes Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Units</th>
<th>Proposed New HUD</th>
<th>NEEM</th>
<th>HPMH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling</td>
<td>R-Value</td>
<td>R38</td>
<td>R40</td>
<td>R49</td>
</tr>
<tr>
<td>Wall</td>
<td>R-Value</td>
<td>R21</td>
<td>R21</td>
<td>R21 + R5 Foam Sheathing</td>
</tr>
<tr>
<td>Window U-Value</td>
<td>U-Value</td>
<td>0.32</td>
<td>0.34</td>
<td>0.22</td>
</tr>
<tr>
<td>Glazing %</td>
<td>% of CFA</td>
<td>Part of Uo calc</td>
<td>12% ave</td>
<td>12% ave</td>
</tr>
<tr>
<td>Door</td>
<td>U-Value</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Floor</td>
<td>R-Value</td>
<td>R30</td>
<td>R33</td>
<td>R38</td>
</tr>
<tr>
<td>Infiltration</td>
<td>ACH 50</td>
<td>5.0 (sort of)</td>
<td>3.9 ave</td>
<td>3.0</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Exhaust Fan</td>
<td>Market Base</td>
<td>ENERGYSTAR®</td>
<td>ENERGYSTAR®</td>
</tr>
<tr>
<td>Uo</td>
<td>Btu/hr-ft²-°F</td>
<td>0.059</td>
<td>0.054</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Notes
- **HUD**
- **NEEM**
- **HPMH**
Manufactured Homes Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Units</th>
<th>Baseline "HUD+"</th>
<th>NEEM</th>
<th>HPMH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating System</td>
<td></td>
<td>Electric FAF</td>
<td>Electric FAF</td>
<td>DHP HSPF 10 & Wall Heaters</td>
</tr>
<tr>
<td>Cooling System</td>
<td></td>
<td>none</td>
<td>none</td>
<td>DHP SEER 20</td>
</tr>
<tr>
<td>Supply Duct Leakage</td>
<td>% system flow</td>
<td>12.5%</td>
<td>5%</td>
<td>No Ducts</td>
</tr>
<tr>
<td>Return Duct Leakage</td>
<td>% system flow</td>
<td>None - Interior</td>
<td>None - Interior</td>
<td>No Ducts</td>
</tr>
<tr>
<td>DHW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Heater</td>
<td>EF</td>
<td>0.9 EF</td>
<td>0.93 EF</td>
<td>HPWH</td>
</tr>
<tr>
<td>Shower Head</td>
<td>gpm</td>
<td>2.5</td>
<td>2.5</td>
<td>1.75</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting Power Density</td>
<td>W/ft²</td>
<td>1.4</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Appliances</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dishwasher</td>
<td></td>
<td>Market Base</td>
<td>Market Base</td>
<td>ENERGYSTAR®</td>
</tr>
<tr>
<td>Refrigerator</td>
<td></td>
<td>Market Base</td>
<td>Market Base</td>
<td>ENERGYSTAR®</td>
</tr>
</tbody>
</table>
Envelope Measures
Mechanicals, Appliances, Lighting
Energy Efficiency Merging Technologies
Energy Efficiency
Emerging Technologies
1. U-0.22 Windows are a 5x cost increase over U-0.30
2. Ductless HP installation in the factory is not a good fit for all floor plans
3. HP Water Heaters can be ducted to draw air from crawlspace
4. Foam sheathing creates some production challenges
Demo Home Annual Energy Consumption

<table>
<thead>
<tr>
<th>Home</th>
<th>Location</th>
<th>Floor Area</th>
<th>UA¹</th>
<th>Total kWh²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toledo, WA</td>
<td>1,279</td>
<td>187</td>
<td>9,542</td>
</tr>
<tr>
<td>2</td>
<td>Pullman, WA</td>
<td>1,296</td>
<td>193</td>
<td>17,254³</td>
</tr>
<tr>
<td>3</td>
<td>Otis, OR</td>
<td>1,404</td>
<td>207</td>
<td>6,896</td>
</tr>
<tr>
<td>4</td>
<td>Bothell, WA</td>
<td>1,137</td>
<td>169</td>
<td>~ 6,800</td>
</tr>
<tr>
<td>5</td>
<td>Chehalis, WA</td>
<td>1,492</td>
<td>223</td>
<td>~ 9,200</td>
</tr>
<tr>
<td>6</td>
<td>Sixes, OR</td>
<td>587</td>
<td>112</td>
<td>~ 8,100</td>
</tr>
<tr>
<td>7</td>
<td>Siletz, OR</td>
<td>2,100</td>
<td>286</td>
<td>TBD</td>
</tr>
<tr>
<td>8</td>
<td>Boring, OR</td>
<td>1,138</td>
<td>187</td>
<td>TBD</td>
</tr>
</tbody>
</table>

1. Includes assumption of 0.28 ACHn
2. Estimated based on current use projections
3. Not being used as a home – 24/7 housing for emergency services staff
Example Energy Breakdown

HPMH #3 (Otis, OR) Monthly Usage Breakout
Mar 20, 2015 to Apr 19, 2015

Monthly Total: $63
Heating Load

HPMH #1 Heating Use by Outdoor Temperature (kWh)

Master Bed ER: 2.4 kWh
Bathroom ER: 26 kWh
DHP: 1,240 kWh
Room Temperatures with a Single DHP Providing over 95 Percent of the Heating During Typical Western Washington or Oregon Winter Weather
Crawlspace Buffering for the HPWH

HPMH Site 1 Crawl Space to Outside Temperature Difference

Outdoor Temperature (F)

Temperature Difference (F)

Impact tips at 59 degrees (F)

HPWH Active

HPWH Inactive
1. Annual Energy Use appear on target
 6,500-8,500 kWh (roughly 8000 kWh savings)
2. DHPs Carry ~99% of space condition load
3. Comfort remains good with central DHP
 Effects of door closure still warrant study
4. HPWH works well in a manufactured home
 Drawing from Crawlspace provides good tempering benefit
 (confirms PNNL lab home findings)
 Noise not a problem
Annual Energy Comparison

Annual energy bill

Energy Use (kWh/yr)

Portland
Boise
Missoula

Baseline
NEEM
HPMH
Baseline
NEEM
HPMH
Baseline
NEEM
HPMH

HVAC
DHW
Lights
Plug Loads
The Next Step = NEEM 2.0 Spec

<table>
<thead>
<tr>
<th>Performance Tier</th>
<th>kWh/yr</th>
<th>Savings/unit</th>
<th>Incremental Cost Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD</td>
<td>15,900</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>HUD+</td>
<td>15,500</td>
<td>-</td>
<td>$</td>
</tr>
<tr>
<td>NEEM 1.1</td>
<td>12,900</td>
<td>2,600</td>
<td>$ 2,500</td>
</tr>
<tr>
<td>NEEM 2.0</td>
<td>10,300</td>
<td>5,200</td>
<td>$ 7,000</td>
</tr>
<tr>
<td>HPMH</td>
<td>7,500</td>
<td>8,000</td>
<td>$ 20,000</td>
</tr>
</tbody>
</table>
NEEM 2.0 Upgrade

GOAL: Upgrade and establish NEEM 2.0 spec before future HUD Code is implemented

VISION
1. The Federal “HUD code” is equal to site built homes.
2. **50% of homes are built to NEEM 2.0 specification.**
3. A vibrant market exists for early retirement of pre-1984 mobile homes. (pending additional market research and clear strategy)

SAVINGS Technical Potential:
- HUD code 18 aMW underway
- NEEM upgrade 18 aMW
- Early Retirement 48 aMW in scanning
- 84 aMW
Market Transformation Opportunity

<table>
<thead>
<tr>
<th>Tier</th>
<th>Now</th>
<th>During</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td></td>
<td>NEEM 2.0</td>
<td>HPMH</td>
</tr>
<tr>
<td>Good</td>
<td>NEEM 1.1</td>
<td>NEEM 1.1</td>
<td>NEEM 2.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>HUD+</td>
<td>HUD+</td>
<td>NEEM 1.1</td>
</tr>
</tbody>
</table>

NEEM 1.1 is roughly equal to the future HUD Code.

Performance

<table>
<thead>
<tr>
<th>Tier</th>
<th>kWh/yr</th>
<th>Savings/unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD</td>
<td>15,900</td>
<td>n/a</td>
</tr>
<tr>
<td>HUD+</td>
<td>15,500</td>
<td>-</td>
</tr>
<tr>
<td>NEEM 1.1</td>
<td>12,900</td>
<td>2,600</td>
</tr>
<tr>
<td>NEEM 2.0</td>
<td>10,300</td>
<td>5,200</td>
</tr>
<tr>
<td>HPMH</td>
<td>7,500</td>
<td>8,000</td>
</tr>
</tbody>
</table>

Assumes the future HUD code is roughly equivalent to the current NEEM 1.1 spec.

Use based on 85% of RTF workbook values (2012 values), aMW based on 80,000 units sold over 20 years.
Possible Program Timeline

Possible Program Timeline

Date When New HUD Code Takes effect is unknown

Note - This does not include all program development activities, stakeholder engagement, database upgrade, field validation of specification, etc.
Questions?
Questions?

Christopher Dymond
Senior Product Manager
Northwest Energy Efficiency Alliance
cdymond@neea.org

Brady Peeks
Technical Director
Northwest Energy Works, Inc.
brady@northwestenergyworks.com

Michael Lubliner
Senior Building Science Specialist
WSU Energy Program
lublinerm@energy.wsu.edu
Upcoming Showcase Webinars

September 24 – Mogul Base LED Lamps for Retrofits
October 22 – Easily Commissioned Lighting Controls

Information and registration at www.e3tnw.org/webinars
Join our email list for notification at subscribe-e3tnw@listserv.energy.wsu.edu

More information about emerging technologies:
E3T database: www.e3tnw.org
E3T Program: www.bpa.gov/energy/n/emerging_technology/
Conduit: www.ConduitNW.org

Thank you for attending our E3T Showcase Webinar!