

The Technology Performance ExchangeTM

Emerging Technologies Showcase

August 27, 2014

Welcome. Today's webinar is being recorded and will be posted at:

- www.E3Tnw.org
- www.ConduitNW.org

GoToWebinar Logistics

Minimize or maximize control panel

 Please use question pane to ask questions during Q & A or if you have any technical issues

NOTE: Today's presentation is being recorded and will be available at http://e3tnw.org/Webinars within 48 hours

The Technology Performance ExchangeTM

Daniel Studer
National Renewable Energy Laboratory

Emerging Technologies Showcase

August 27, 2014

Introduction

PROBLEM: How do building owners/operators, utilities, and technology demonstrators make informed decisions on energy saving technologies? Building Owners/Operators, Utilities, and Technology Demonstrators Performance apples! Cut sheets! Performance oranges! **New Technology** Performance pear! Manufacturers

Credit: Marjorie Schott, NREL

Introduction

Analysts

- Engineers
- Energy modelers
- Researchers

Implementers

- Commercial building owners/operators
- Utilities
- Technology evaluation staff

Credit: Marjorie Schott, NREL

The Technology Performance Exchange

The Technology Performance Exchange

Data Entry Forms

- Minimum parameters necessary to support a robust analysis
- Product specific
- Identified through engineering analysis
- Analysis tool agnostic

Credit: Daniel Studer, NREL

Performance Map Example

Basic Information							
Brand Owner							
Brand							
Product Line/Family Name							
Model Number							

Legend									
Fill this information in first									
Provide DHP indoor unit cooling performance information in these cells for the conditions specified									
information in these cells for the conditions specified									

Performance Map																					
Outsian Air Day Built	Indoor Air Wet-Rulh Temperature																				
Outdoor Air Dry–Bulb Temperature	13.9°C		16.1°C		17.8°C			19.4°C			21.1°C			22.8°C			24.4°C				
	СС	SC	EI	CC	SC	EI	CC	SC	EI	CC	SC	EI	CC	SC	EI	CC	SC	EI	CC	SC	EI
−5.0°C																					
−3.9°C																					
-1.1°C																					
1.7°C																					
4.4°C																					
7.2°C																					
10.0°C																					
12.8°C																					
15.6°C																					
18.3°C																					
21.1°C																					
23.9°C																					
26.7°C																					
29.4°C																					
32.2°C																					
35.0°C																					
37.8°C																					
40.6°C																					
43.3°C																					

CC: Cooling Capacity (kW)

SC: Sensible Capacity (kW)

EI: Energy Input (kW)

Credit: Daniel Studer, NREL

Data Provenance

How can we ensure data credibility?

Credit: Daniel Studer, NREL

- Organization Type
- Organization Name

- Posting Date
- Derivation Method

Data Accessibility

Demonstration

www.TPEx.org

Lowering Analysis Barriers

Electric Utility Benefits

- Data aggregator
 - Combine similar data from many sources
 - Allow users to analyze performance before field demonstration
 - Verify with limited field testing, if necessary
- Qualified product list development/ maintenance

Utility/TPEx Interactions

Utility/TPEx Interactions

Utility/TPEx Interactions

Project Status

- TPEx is live at <u>www.TPEx.org</u>
- 17 technology categories implemented (18th inprogress)
- DOE RFI requesting manufacturer performance data
- 20,000+ product datasets
- Public commitments from Target, Walmart, the Bonneville Power Administration, and LG
- Ongoing interactions with additional manufacturers and utilities

Next Steps

- Seeking additional commitments from
 - Product manufacturers: Provide data
 - Retailers: Request vendors provide data to TPEx
- Working with utilities to pilot TPEx integration in technology demonstration workflows
 - Interested in identifying additional partners

Questions?

Daniel Studer

TPEx@nrel.gov

Upcoming Showcase Webinars

- CEA 2045 Concept Tuesday, September 23, 2014
- Engine Generator Block Heaters Wednesday, October 15, 2014

Information and registration at www.e3tnw.org/webinars

Join our email list for notification at subscribe-e3tnw@listserv.energy.wsu.edu

More information about emerging technologies:

E3T database: www.e3tnw.org

E3T Program: www.bpa.gov/energy/n/emerging-technology/

Conduit: www.ConduitNW.org

