LED Downlights (Can) for Residential Retrofit Applications
Downlight Lighting: LED vs. Incandescent, Halogen, CFL
Downlighting using LED technology to provide very efficient, very directional, instant-on, and often dimmable lighting to replace CFLs and incandescent lamps for “can” lights.
Synopsis:
Downlights make good use of the directional nature of LED lighting. The products are rapidly improving, already surpassing halogen infrared technology in light output and efficacy. Some products are dimmable and produce a warm white light with good color qualities for residential use.
Products are available for new construction as well as do-it-yourself retrofits. Some types of retrofits are particularly easy to install because the retrofit kit is a self-contained unit with no removable parts and is available with GU-24 and Edison bases to fit existing sockets.
The energy savings can approach 70% to 80% when replacing incandescent technology, and nearly 50% when replacing compact fluorescent reflector lamps. Consumers need to purchase quality products and understand what the product can do in terms of light output and distribution, and how it will work if dimming is part of the application.
Energy Savings: 75%
Energy Savings Rating: Approved Measure
What's this?
Level | Status | Description |
1 | Concept not validated | Claims of energy savings may not be credible due to lack of documentation or validation by unbiased experts. |
2 | Concept validated: | An unbiased expert has validated efficiency concepts through technical review and calculations based on engineering principles. |
3 | Limited assessment | An unbiased expert has measured technology characteristics and factors of energy use through one or more tests in typical applications with a clear baseline. |
4 | Extensive assessment | Additional testing in relevant applications and environments has increased knowledge of performance across a broad range of products, applications, and system conditions. |
5 | Comprehensive analysis | Results of lab and field tests have been used to develop methods for reliable prediction of performance across the range of intended applications. |
6 | Approved measure | Protocols for technology application are established and approved. |
Simple Payback is one tool used to estimate the cost-effectiveness of a proposed investment, such as the investment in an energy efficient technology. Simple payback indicates how many years it will take for the initial investment to "pay itself back." The basic formula for calculating a simple payback is:
Simple Payback = Incremental First Cost / Annual Savings
The Incremental Cost is determined by subtracting the Baseline First Cost from the Measure First Cost.
For New Construction, the Baseline First Cost is the cost to purchase the standard practice technology. The Measure First Cost is the cost of the alternative, more energy efficienct technology. Installation costs are not included, as it is assumed that installation costs are approximately the same for the Baseline and the Emerging Technology.
For Retrofit scenarios, the Baseline First Cost is $0, since the baseline scenario is to leave the existing equipment in place. The Emerging Technology First Cost is the Measure First Cost plus Installation Cost (the cost of the replacement technology, plus the labor cost to install it). Retrofit scenarios generally have a higher First Cost and longer Simple Paybacks than New Construction scenarios.
Simple Paybacks are called "simple" because they do not include details such as the time value of money or inflation, and often do not include operations and maintenance (O&M) costs or end-of-life disposal costs. However, they can still provide a powerful tool for a quick assessment of a proposed measure. These paybacks are rough estimates based upon best available data, and should be treated with caution. For major financial decisions, it is suggested that a full Lifecycle Cost Analysis be performed which includes the unique details of your situation.
The energy savings estimates are based upon an electric rate of $.09/kWh, and are calculated by comparing the range of estimated energy savings to the baseline energy use. For most technologies, this results in "Typical," "Fast" and "Slow" payback estimates, corresponding with the "Typical," "High" and "Low" estimates of energy savings, respectively.